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P.O. Box 5969 Safat, 13060 Safat, Kuwait 

ABSTRACT: Hammett replacement a* substituent constants of pyridyl, 
thienyl, and fury1 groups are reported for the first time from gas-phase 
eliminations of their t-butyl and isopropyl heteroarylcarboxylate esters. 

Exner has recently provided a critical compilation of Hammett substi- 

tuent constants and suggested that gas-phase data are of particular impor- 

tance but scarce.' Such data would be notably free of solvent effects, 

protonation phenomena-, and hydrogen-bonding. Replacement u* constants of 

heteroaryl groups are so far available only from solution chemistry.'-' 

The present work therefore seems to present the first attempt at providing 

gas-phase data on the a* parameter. The work also seems to suggest that 

bona fide heteroaryl u* -- constants are likely to be those based on reaction 

(rho) constants of substituted ethanoic acids or ethanoate esters rather 

than their carboxylate counterparts, and that gas-phase elimination p 

parameters of the ethanoate and the carboxylate frames are interconver- 

tible. 
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Scheme: G = phenyl, pyridyl, thienyl, or fury1 group 

R = H or Me substituent 

Rates of the gas-phase thermal eliminations (Scheme) of six isopro- 

pyl and six t_-butyl heteroarylcarboxylate esters together with their two 

reference alkyl benzoates were measured using the flow system described 

elsewhere.' From these data, replacement u* substituent constants were 

calculated using the reaction (p) constants obtained from the gas-phase 

eliminations of the alkyl benzoate and phenylethanoate esters. 

The Hammett plot (Figure) of log k/k, of the rates of gas-phase pyro- 

lysis of i-butyl benzoate and of t-butyl 3- and 4-pyridyl-, 2-thienyl-, and 
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2-furylcarboxylates (this study) against literature”’ uo values of these 

heteroaryl groups (ionization constants of substituted phenylethanoic 

acids and hydrolysis of substituted carboxylate esters) gave a reaction 

parameter p = 0.39 at 600 K. This value is the same as that obtained by 

Amin and Taylor’ for the gas-phase pyrolysis of t-butyl phenylethanoate 

esters (p = 0.39 at 600 K). Amin and Taylor have also shown that the rho 

value (p = 0.58 at 600 K) of the t-butyl benzoate ester system’ could be 

converted to that of the phenylethanoate system’ using a factor (1.45) 

which they were able to correlate with data on benzoic and phenylethanoic 

acids. Structurally, the carboxylate and ethanoate systems are also 

interrelated: the insertion of a CH2 unit between the (heteroIary1 moiety 

and the carboxylate function leads to the ethanoate frame. When fac- 

torization was extended to the analogous isopropyl ester system’ the reac- 

tion parameter (P = 0.335 at 600 KI of isopropyl benzoate’ was reduced to 

P = 0.23. It is of interest to note that the ethanoate system is expected 

to provide ao values less susceptible to resonance interactions compared 

with the carboxylate frame. 
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In the present work two sets of gas-phase replacement ao values are 

presented (Table) for the six heteroaryl groups under study. One set is 

based on the reaction constants of the isopropyl and t-butyl benzoate 

esters: p = 0.335 for the former, and 0.58 for the latter. The second set 

is based on the reaction constants obtained for isopropyl and t-butyl phe- 

nylethanoate esters: p = 0.23 and p = 0.39, respectively. For comparison 

purposes, the Table also contains literature uo values for the same hetero- 

aryl substituents from solution reactions. The spread between average and 

upper and lower limits of gas-phase u” values of each individual hetero- 

aryl group in any one of the two data sets is in the range of f 0.02 ao 

units. Literature a0 values from solution chemistry are at variance with 

the gas-phase data based on the p values of the heteroarylcarboxylate 

esters, but agree very well with those based on p constants obtained for 

the ethanoate esters. 

Values of uo from gas-phase eliminations at 600 K 

Group 

Alkyl Benzoates Alkyl Phenylethanoates Solution co 

isopropyl t-butyl isopropyl f,-butyl constants 

(p = 0.335) (P = 0.58) (p = 0.23) (p = 0.39) (ref. 2-6) 

3-Pyridyl 0.38 0.34 0.55 0.51 0.5310.72 

4-Pyridyl 0.61 0.60 0.88 0.89 0.85~0.94 

2-Thienyl 0.37 0.35 0.53 0.52 0.50 

2-Fury1 0.29 0.26 0.42 0.39 0.41 

3-Thienyl -0.089 -0.12 -0.13 -0.18 0.04 

3-Fury1 -0.18 -0.17 -0.26 -0.25 0.04 

We do not have as yet a rationale for the notable divergence in the 

uo values of the 3-fury1 and 3-thienyl qroups except to invoke the struc- 

tural framework (Scheme) through which the heteroatoms (0,s) exert their 

electronic effects, and to note that these centres are mesomerically 

electron-donating, though inductively they are electron-withdrawing. The 

3-pyridyl and 4-pyridyl qroups, on the other hand, are electron-withdraw- 

ing C-1; 4 effects). In the case of the 2-fury1 and 2-thienyl moieties, 

the -1 effects of the 0 and S (most likely for proximity reasons) seem to 

outweigh the +M effects of these atoms. Further, the S atom has an empty 

d-orbital which would tend to make the thienyl groups more electron- 

accommodating than their fury1 counterparts, a fact borne out by the com- 

parative values of a0 obtained in the case of both the 2-furyl/2-thienyl 
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and the 3-furyl/3-thienyl substituent pairs. 
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