GAS-PHASE REPLACEMENT σ^{o} substituent constants OF HETEROARYL GROUPS1

Nouria A. Al-Awadi*, Rasha F. Al-Bashir, Osman M. E. ElDusouqui*

Department of Chemistry, University of Kuwait P.O. Box 5969 Safat, 13060 Safat, Kuwait

Hammett replacement σ^{0} substituent constants of pyridyl, ABSTRACT: thienyl, and furyl groups are reported for the first time from gas-phase eliminations of their t-butyl and isopropyl heteroarylcarboxylate esters.

Exner has recently provided a critical compilation of Hammett substituent constants and suggested that gas-phase data are of particular importance but scarce.² Such data would be notably free of solvent effects, protonation phenomena, and hydrogen-bonding. Replacement σ^0 constants of heteroaryl groups are so far available only from solution chemistry.²⁻⁶ The present work therefore seems to present the first attempt at providing gas-phase data on the σ^0 parameter. The work also seems to suggest that <u>bona</u> fide heteroaryl σ^0 constants are likely to be those based on reaction (rho) constants of substituted ethanoic acids or ethanoate esters rather than their carboxylate counterparts, and that gas-phase elimination p parameters of the ethanoate and the carboxylate frames are interconvertible.

Scheme: G = phenyl, pyridyl, thienyl, or furyl group R = H or Me substituent

Rates of the gas-phase thermal eliminations (Scheme) of six isopropyl and six t-butyl heteroarylcarboxylate esters together with their two reference alkyl benzoates were measured using the flow system described elsewhere.' From these data, replacement σ^{o} substituent constants were calculated using the reaction (p) constants obtained from the gas-phase eliminations of the alkyl benzoate and phenylethanoate esters.

The Hammett plot (Figure) of log k/ $k_{
m O}$ of the rates of gas-phase pyrolysis of t-butyl benzoate and of t-butyl 3- and 4-pyridyl-, 2-thienyl-, and 2-furylcarboxylates (this study) against literature^{3,4} σ^0 values of these heteroaryl groups (ionization constants of substituted phenylethanoic acids and hydrolysis of substituted carboxylate esters) gave a reaction parameter $\rho = 0.39$ at 600 K. This value is the same as that obtained by Amin and Taylor' for the gas-phase pyrolysis of \underline{t} -butyl phenylethanoate esters ($\rho = 0.39$ at 600 K). Amin and Taylor have also shown that the rho value (p = 0.58 at 600 K) of the <u>t</u>-butyl benzoate ester system' could be converted to that of the phenylethanoate system⁸ using a factor (1.45) which they were able to correlate with data on benzoic and phenylethanoic acids. Structurally, the carboxylate and ethanoate systems are also interrelated: the insertion of a CH₂ unit between the (hetero)aryl moiety and the carboxylate function leads to the ethanoate frame. When factorization was extended to the analogous isopropyl ester system⁷ the reaction parameter (ρ = 0.335 at 600 K) of isopropyl benzoate⁹ was reduced to $\rho = 0.23$. It is of interest to note that the ethanoate system is expected to provide σ^0 values less susceptible to resonance interactions compared with the carboxylate frame.

In the present work two sets of gas-phase replacement σ^0 values are presented (Table) for the six heteroaryl groups under study. One set is based on the reaction constants of the isopropyl and <u>t</u>-butyl benzoate esters: $\rho = 0.335$ for the former, and 0.58 for the latter. The second set is based on the reaction constants obtained for isopropyl and <u>t</u>-butyl phenylethanoate esters: $\rho = 0.23$ and $\rho = 0.39$, respectively. For comparison purposes, the Table also contains literature σ^0 values for the same heteroaryl substituents from solution reactions. The spread between average and upper and lower limits of gas-phase σ^0 values of each individual heteroaryl group in any one of the two data sets is in the range of $\pm 0.02 \sigma^0$ units. Literature σ^0 values from solution chemistry are at variance with the gas-phase data based on the ρ values of the heteroarylcarboxylate esters, but agree very well with those based on ρ constants obtained for the ethanoate esters.

Group	Alkyl Benzoates		Alkyl Phenylethanoates		Solution σ^{0}
	isopropyl (p = 0.335)	<u>t</u> -butyl (ρ = 0.58)	isopropyl (p = 0.23)	<u>t</u> -butyl (ρ = 0.39)	constants (ref. 2-6)
			- i <u>-</u>		
3-Pyridyl	0.38	0.34	0.55	0.51	0.53;0.72
4-Pyridyl	0.61	0.60	0.88	0.89	0.85;0.94
2-Thienyl	0.37	0.35	0.53	0.52	0.50
2-Furyl	0.29	0.26	0.42	0.39	0.41
3-Thienyl	-0.089	-0.12	-0.13	-0.18	0.04
3-Furyl	-0.18	-0.17	-0.26	-0.25	0.04

Values of σ^0 from gas-phase eliminations at 600 K

We do not have as yet a rationale for the notable divergence in the σ^{0} values of the 3-furyl and 3-thienyl groups except to invoke the structural framework (Scheme) through which the heteroatoms (0,S) exert their electronic effects, and to note that these centres are mesomerically electron-donating, though inductively they are electron-withdrawing. The 3-pyridyl and 4-pyridyl groups, on the other hand, are electron-withdrawing (-I; -M effects). In the case of the 2-furyl and 2-thienyl moieties, the -I effects of the 0 and S (most likely for proximity reasons) seem to outweigh the +M effects of these atoms. Further, the S atom has an empty d-orbital which would tend to make the thienyl groups more electron-accommodating than their furyl counterparts, a fact borne out by the comparative values of σ^{0} obtained in the case of both the 2-furyl/2-thienyl

and the 3-furyl/3-thienyl substituent pairs.

<u>Acknowledgements</u>: The authors gratefully acknowledge the support received from Kuwait University through research grant **#** SC032.

REFERENCES

- Gas-phase Pyrolytic Reactions Series. For part 1, see N. A.
 Al-Awadi, R. F. Al-Bashir, and O. M. E. ElDusouqui, <u>J. Chem. Soc.</u>, <u>Perkin Trans. 2</u>, accepted for publication: paper 8/02118J.
- O. Exner, in "Correlation Analysis in Chemistry: Recent Advances," ed. N. B. Chapman and J. Shorter, Plenum Press, New York, 1978, Chapter 10, pp. 439 - 540.
- Y. Otsuji, Y. Koda, M. Kubo, M. Furukawa, and E. Imoto, <u>Nippon Kagaku Zasshi</u>, 1959, <u>80</u>, 1300.
- 4. J. H. Blanch, <u>J. Chem. Soc.(B)</u>, 1966, 937.
- 5. G. T. Bruce, A. R. Cooksey, K. J. Morgan, <u>J. Chem. Soc., Perkin</u> <u>Trans. 2</u>, 1975, 551.
- M. Sawada, M. Ichihara, T. Ando, and Y. Yukawa, <u>Tetrahedron</u> <u>Lett.</u>, 1980, <u>21</u>, 4917.
- H. B. Amin and R. Taylor, <u>J. Chem. Soc., Perkin Trans. 2</u>, 1978, 1095.
- H. B. Amin and R. Taylor, <u>J. Chem. Soc., Perkin Trans. 2</u>, 1975, 1802.
- G. G. Smith, D. A. K. Jones, and D. F. Brown, <u>J. Org. Chem.</u>, 1963, <u>28</u>, 403; G. G. Smith and D. A. K. Jones, <u>ibid</u>, p. 3896.

(Received in UK 30 January 1989)